Computer Science > Information Theory
[Submitted on 3 Feb 2022 (v1), last revised 15 Sep 2022 (this version, v3)]
Title:Seeded Database Matching Under Noisy Column Repetitions
View PDFAbstract:The re-identification or de-anonymization of users from anonymized data through matching with publicly-available correlated user data has raised privacy concerns, leading to the complementary measure of obfuscation in addition to anonymization. Recent research provides a fundamental understanding of the conditions under which privacy attacks are successful, either in the presence of obfuscation or synchronization errors stemming from the sampling of time-indexed databases. This paper presents a unified framework considering both obfuscation and synchronization errors and investigates the matching of databases under noisy column repetitions. By devising replica detection and seeded deletion detection algorithms, and using information-theoretic tools, sufficient conditions for successful matching are derived. It is shown that a seed size logarithmic in the row size is enough to guarantee the detection of all deleted columns. It is also proved that this sufficient condition is necessary, thus characterizing the database matching capacity of database matching under noisy column repetitions and providing insights on privacy-preserving publication of anonymized and obfuscated time-indexed data.
Submission history
From: Serhat Bakirtas [view email][v1] Thu, 3 Feb 2022 17:40:04 UTC (608 KB)
[v2] Thu, 12 May 2022 19:04:34 UTC (664 KB)
[v3] Thu, 15 Sep 2022 02:33:29 UTC (198 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.