Computer Science > Information Theory
[Submitted on 3 Feb 2022 (v1), last revised 6 May 2022 (this version, v2)]
Title:Matching of Markov Databases Under Random Column Repetitions
View PDFAbstract:Matching entries of correlated shuffled databases have practical applications ranging from privacy to biology. In this paper, motivated by synchronization errors in the sampling of time-indexed databases, matching of random databases under random column repetitions and deletions is investigated. It is assumed that for each entry (row) in the database, the attributes (columns) are correlated, which is modeled as a Markov process. Column histograms are proposed as a permutation-invariant feature to detect the repetition pattern, whose asymptotic-uniqueness is proved using information-theoretic tools. Repetition detection is then followed by a typicality-based row matching scheme. Considering this overall scheme, sufficient conditions for successful matching of databases in terms of the database growth rate are derived. A modified version of Fano's inequality leads to a tight necessary condition for successful matching, establishing the matching capacity under column repetitions. This capacity is equal to the erasure bound, which assumes the repetition locations are known a-priori. Overall, our results provide insights on privacy-preserving publication of anonymized time-indexed data.
Submission history
From: Serhat Bakirtas [view email][v1] Thu, 3 Feb 2022 17:48:04 UTC (320 KB)
[v2] Fri, 6 May 2022 22:38:15 UTC (112 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.