Mathematics > Dynamical Systems
[Submitted on 3 Feb 2022 (v1), last revised 31 Jul 2023 (this version, v2)]
Title:Mean field limits of co-evolutionary heterogeneous networks
View PDFAbstract:Many science phenomena are modelled as interacting particle systems (IPS) coupled on static networks. In reality, network connections are far more dynamic. Connections among individuals receive feedback from nearby individuals and make changes to better adapt to the world. Hence, it is reasonable to model myriad real-world phenomena as co-evolutionary (or adaptive) networks. These networks are used in different areas including telecommunication, neuroscience, computer science, biochemistry, social science, as well as physics, where Kuramoto-type networks have been widely used to model interaction among a set of oscillators. In this paper, we propose a rigorous formulation for limits of a sequence of co-evolutionary Kuramoto oscillators coupled on heterogeneous co-evolutionary networks, which receive feedback from the dynamics of the oscillators on the networks. We show under mild conditions, the mean field limit (MFL) of the co-evolutionary network exists and the sequence of co-evolutionary Kuramoto networks converges to this MFL. Such MFL is described by solutions of a generalized Vlasov type equation. We treat the graph limits as graph measures, motivated by the recent work in [Kuehn, Xu. Vlasov equations on digraph measures, JDE, 339 (2022), 261--349]. Under a mild condition on the initial graph measure, we show that the graph measures are positive over a finite time interval. In comparison to the recently emerging works on MFLs of IPS coupled on non-co-evolutionary networks (i.e., static networks or time-dependent networks independent of the dynamics of the IPS), our work seems the first to rigorously address the MFL of a co-evolutionary network model.
Submission history
From: Chuang Xu [view email][v1] Thu, 3 Feb 2022 18:08:53 UTC (60 KB)
[v2] Mon, 31 Jul 2023 22:25:02 UTC (62 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.