Mathematics > Numerical Analysis
[Submitted on 3 Feb 2022 (v1), last revised 28 Dec 2022 (this version, v5)]
Title:Waveform inversion via reduced order modeling
View PDFAbstract:We introduce a novel approach to waveform inversion, based on a data driven reduced order model (ROM) of the wave operator. The presentation is for the acoustic wave equation, but the approach can be extended to elastic or electromagnetic waves. The data are time resolved measurements of the pressure wave gathered by an acquisition system which probes the unknown medium with pulses and measures the generated waves. We propose to solve the inverse problem of velocity estimation by minimizing the square misfit between the ROM computed from the recorded data and the ROM computed from the modeled data, at the current guess of the velocity. We give the step by step computation of the ROM, which depends nonlinearly on the data and yet can be obtained from them in a non-iterative fashion, using efficient methods from linear algebra. We also explain how to make the ROM robust to data inaccuracy. The ROM computation requires the full array response matrix gathered with collocated sources and receivers. However, we show that the computation can deal with an approximation of this matrix, obtained from towed-streamer data using interpolation and reciprocity on-the-fly.
While the full-waveform inversion approach of nonlinear least-squares data fitting is challenging without low frequency information, due to multiple minima of the data fit objective function, we show that the ROM misfit objective function has a better behavior, even for a poor initial guess. We also show by an explicit computation of the objective functions in a simple setting that the ROM misfit objective function has convexity properties, whereas the least squares data fit objective function displays multiple local minima.
Submission history
From: Jörn Zimmerling [view email][v1] Thu, 3 Feb 2022 20:03:16 UTC (9,777 KB)
[v2] Mon, 7 Feb 2022 17:19:19 UTC (9,776 KB)
[v3] Fri, 3 Jun 2022 13:44:41 UTC (3,603 KB)
[v4] Sun, 16 Oct 2022 15:15:29 UTC (4,527 KB)
[v5] Wed, 28 Dec 2022 15:16:50 UTC (4,169 KB)
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.