Mathematics > Optimization and Control
[Submitted on 2 Feb 2022 (v1), last revised 19 Feb 2022 (this version, v2)]
Title:Yordle: An Efficient Imitation Learning for Branch and Bound
View PDFAbstract:Combinatorial optimization problems have aroused extensive research interests due to its huge application potential. In practice, there are highly redundant patterns and characteristics during solving the combinatorial optimization problem, which can be captured by machine learning models. Thus, the 2021 NeurIPS Machine Learning for Combinatorial Optimization (ML4CO) competition is proposed with the goal of improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components with machine learning techniques. This work presents our solution and insights gained by team qqy in the dual task of the competition. Our solution is a highly efficient imitation learning framework for performance improvement of Branch and Bound (B&B), named Yordle. It employs a hybrid sampling method and an efficient data selection method, which not only accelerates the model training but also improves the decision quality during branching variable selection. In our experiments, Yordle greatly outperforms the baseline algorithm adopted by the competition while requiring significantly less time and amounts of data to train the decision model. Specifically, we use only 1/4 of the amount of data compared to that required for the baseline algorithm, to achieve around 50% higher score than baseline algorithm. The proposed framework Yordle won the championship of the student leaderboard.
Submission history
From: Xijun Li [view email][v1] Wed, 2 Feb 2022 14:46:30 UTC (223 KB)
[v2] Sat, 19 Feb 2022 08:16:28 UTC (223 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.