Mathematics > Functional Analysis
[Submitted on 16 Feb 2022]
Title:Multidimensional Fractional Wavelet Transforms and Uncertainty Principles
View PDFAbstract:In this paper, we have given a new definition of continuous fractional wavelet transform in $\mathbb{R}^N$, namely the multidimensional fractional wavelet transform (MFrWT) and studied some of the basic properties along with the inner product relation and the reconstruction formula. We have also shown that the range of the proposed transform is a reproducing kernel Hilbert space and obtain the associated kernel. We have obtained the uncertainty principle like Heisenberg's uncertainty principle, logarithmic uncertainty principle and local uncertainty principle of the multidimensional fractional Fourier transform (MFrFT). Based on these uncertainty principles of the MFrFT we have obtained the corresponding uncertainty principles i.e., Heisenberg's, logarithmic and local uncertainty principles for the proposed MFrWT.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.