Mathematics > Statistics Theory
[Submitted on 23 Mar 2022 (v1), last revised 27 Feb 2024 (this version, v4)]
Title:Post-selection inference for e-value based confidence intervals
View PDF HTML (experimental)Abstract:Suppose that one can construct a valid $(1-\delta)$-confidence interval (CI) for each of $K$ parameters of potential interest. If a data analyst uses an arbitrary data-dependent criterion to select some subset $S$ of parameters, then the aforementioned CIs for the selected parameters are no longer valid due to selection bias. We design a new method to adjust the intervals in order to control the false coverage rate (FCR). The main established method is the "BY procedure" by Benjamini and Yekutieli (JASA, 2005). The BY guarantees require certain restrictions on the selection criterion and on the dependence between the CIs. We propose a new simple method which, in contrast, is valid under any dependence structure between the original CIs, and any (unknown) selection criterion, but which only applies to a special, yet broad, class of CIs that we call e-CIs. To elaborate, our procedure simply reports $(1-\delta|S|/K)$-CIs for the selected parameters, and we prove that it controls the FCR at $\delta$ for confidence intervals that implicitly invert e-values; examples include those constructed via supermartingale methods, via universal inference, or via Chernoff-style bounds, among others. The e-BY procedure is admissible, and recovers the BY procedure as a special case via a particular calibrator. Our work also has implications for post-selection inference in sequential settings, since it applies at stopping times, to continuously-monitored confidence sequences, and under bandit sampling. We demonstrate the efficacy of our procedure using numerical simulations and real A/B testing data from Twitter.
Submission history
From: Ziyu Xu [view email][v1] Wed, 23 Mar 2022 17:32:35 UTC (324 KB)
[v2] Thu, 24 Mar 2022 01:02:41 UTC (324 KB)
[v3] Wed, 9 Nov 2022 04:10:19 UTC (1,644 KB)
[v4] Tue, 27 Feb 2024 17:09:48 UTC (1,914 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.