Mathematics > Optimization and Control
[Submitted on 23 Mar 2022]
Title:Periodic homogenization in the context of structured deformations
View PDFAbstract:An energy for first-order structured deformations in the context of periodic homogenization is obtained. This energy, defined in principle by relaxation of an initial energy of integral type featuring contributions of bulk and interfacial terms, is proved to possess an integral representation in terms of relaxed bulk and interfacial energy densities. These energy densities, in turn, are obtained via asymptotic cell formulae defined by suitably averaging, over larger and larger cubes, the bulk and surface contributions of the initial energy. The integral representation theorem, the main result of this paper, is obtained by mixing blow-up techniques, typical in the context of structured deformations, with the averaging process proper of the theory of homogenization.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.