Statistics > Methodology
[Submitted on 1 Apr 2022 (v1), last revised 1 Nov 2022 (this version, v2)]
Title:Detecting changes in dynamic social networks using multiply-labeled movement data
View PDFAbstract:The social structure of an animal population can often influence movement and inform researchers on a species' behavioral tendencies. Animal social networks can be studied through movement data; however, modern sources of data can have identification issues that result in multiply-labeled individuals. Since all available social movement models rely on unique labels, we extend an existing Bayesian hierarchical movement model in a way that makes use of a latent social network and accommodates multiply-labeled movement data (MLMD). We apply our model to drone-measured movement data from Risso's dolphins (Grampus griseus) and estimate the effects of sonar exposure on the dolphins' social structure. Our proposed framework can be applied to MLMD for various social movement applications.
Submission history
From: Henry Scharf [view email][v1] Fri, 1 Apr 2022 16:08:00 UTC (135 KB)
[v2] Tue, 1 Nov 2022 20:45:20 UTC (159 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.