Mathematics > Probability
[Submitted on 3 Apr 2022 (v1), last revised 15 Jan 2023 (this version, v2)]
Title:Random Fully Connected Neural Networks as Perturbatively Solvable Hierarchies
View PDFAbstract:This article considers fully connected neural networks with Gaussian random weights and biases as well as $L$ hidden layers, each of width proportional to a large parameter $n$. For polynomially bounded non-linearities we give sharp estimates in powers of $1/n$ for the joint cumulants of the network output and its derivatives. Moreover, we show that network cumulants form a perturbatively solvable hierarchy in powers of $1/n$ in that $k$-th order cumulants in one layer have recursions that depend to leading order in $1/n$ only on $j$-th order cumulants at the previous layer with $j\leq k$. By solving a variety of such recursions, however, we find that the depth-to-width ratio $L/n$ plays the role of an effective network depth, controlling both the scale of fluctuations at individual neurons and the size of inter-neuron correlations. Thus, while the cumulant recursions we derive form a hierarchy in powers of $1/n$, contributions of order $1/n^k$ often grow like $L^k$ and are hence non-negligible at positive $L/n$. We use this to study a somewhat simplified version of the exploding and vanishing gradient problem, proving that this particular variant occurs if and only if $L/n$ is large. Several key ideas in this article were first developed at a physics level of rigor in a recent monograph of Daniel A. Roberts, Sho Yaida, and the author. This article not only makes these ideas mathematically precise but also significantly extends them, opening the way to obtaining corrections to all orders in $1/n$.
Submission history
From: Boris Hanin [view email][v1] Sun, 3 Apr 2022 11:57:18 UTC (82 KB)
[v2] Sun, 15 Jan 2023 10:13:49 UTC (106 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.