Mathematics > Numerical Analysis
[Submitted on 3 Apr 2022 (v1), last revised 30 Aug 2023 (this version, v3)]
Title:Strong convergence rates of an explicit scheme for stochastic Cahn--Hilliard equation with additive noise
View PDFAbstract:In this paper, we propose and analyze an explicit time-stepping scheme for a spatial discretization of stochastic Cahn--Hilliard equation with additive noise. The fully discrete approximation combines a spectral Galerkin method in space with a tamed exponential Euler method in time. In contrast to implicit schemes in the literature, the explicit scheme here is easily implementable and produces significant improvement in the computational efficiency. It is shown that the fully discrete approximation converges strongly to the exact solution, with strong convergence rates identified. Different from the tamed time-stepping schemes for stochastic Allen--Cahn equations, essential difficulties arise in the analysis due to the presence of the unbounded linear operator in front of the nonlinearity. To overcome them, new and non-trivial arguments are developed in the present work. To the best of our knowledge, it is the first result concerning an explicit scheme for the stochastic Cahn--Hilliard equation. Numerical experiments are finally performed to confirm the theoretical results.
Submission history
From: Meng Cai [view email][v1] Sun, 3 Apr 2022 16:08:55 UTC (28 KB)
[v2] Thu, 2 Jun 2022 09:12:04 UTC (27 KB)
[v3] Wed, 30 Aug 2023 00:58:11 UTC (56 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.