Statistics > Methodology
[Submitted on 3 Apr 2022]
Title:Probability and Non-Probability Samples: Improving Regression Modeling by Using Data from Different Sources
View PDFAbstract:Non-probability sampling, for example in the form of online panels, has become a fast and cheap method to collect data. While reliable inference tools are available for classical probability samples, non-probability samples can yield strongly biased estimates since the selection mechanism is typically unknown. We propose a general method how to improve statistical inference when in addition to a probability sample data from other sources, which have to be considered non-probability samples, are available. The method uses specifically tailored regression residuals to enlarge the original data set by including observations from other sources that can be considered as stemming from the target population. Measures of accuracy of estimates are obtained by adapted bootstrap techniques. It is demonstrated that the method can improve estimates in a wide range of scenarios. For illustrative purposes, the proposed method is applied to two data sets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.