Electrical Engineering and Systems Science > Systems and Control
[Submitted on 3 Apr 2022]
Title:Control Co-design of a Hydrokinetic Turbine with Open-loop Optimal Control
View PDFAbstract:This paper introduces a control co-design (CCD) framework to simultaneously explore the physical parameters and control spaces for a hydro-kinetic turbine (HKT) rotor optimization. The optimization formulation incorporates a coupled dynamic-hydrodynamic model to maximize the rotor power efficiency for various time-variant flow profiles. The open-loop optimal control is applied for maximum power tracking, and the blade element momentum theory (BEMT) is used to model the hydrodynamics. Case studies with different control constraints are investigated for CCD. Sensitivity analyses were conducted with respect to different flow profiles and initial geometries. Comparisons are made between CCD and the sequential process, with physical design followed by a control design process under the same conditions. The results demonstrate the benefits of CCD and reveal that, with control constraints, CCD leads to increased energy production compared to the design obtained from the sequential design process.
Submission history
From: Mohammad Reza Amini [view email][v1] Sun, 3 Apr 2022 18:46:04 UTC (2,282 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.