Statistics > Methodology
[Submitted on 4 Apr 2022]
Title:Scalable random number generation for truncated log-concave distributions
View PDFAbstract:Inverse transform sampling is an exceptionally general method to generate non-uniform-distributed random numbers, but can be rather unstable when simulating extremely truncated distributions. Many famous probability models share a property called log-concavity, which is not affected by truncation, so they can all be simulated via rejection sampling using Devroye's approach. This sampler is based on rejection and thus more stable than inverse transform, and uses a very simple envelope whose acceptance rate is guaranteed to be at least 20\%. The aim of this paper is threefold: firstly, to warn against the risk of wrongly simulating from truncated distributions; secondly, to motivate a more extensive use of rejection sampling to mitigate the issues; lastly, to motivate Devroye's automatic method as a practical standard in the case of log-concave distributions. We illustrate the proposal by means of simulations based on some Tweedie distributions, for their relevance in regression analysis.
Submission history
From: Michele Lambardi di San Miniato [view email][v1] Mon, 4 Apr 2022 10:19:01 UTC (388 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.