Statistics > Methodology
[Submitted on 4 Apr 2022 (v1), last revised 2 Jan 2023 (this version, v2)]
Title:Variance estimation for Sequential Monte Carlo Algorithms: a backward sampling approach
View PDFAbstract:In this paper, we consider the problem of online asymptotic variance estimation for particle filtering and smoothing. Current solutions for the particle filter rely on the particle genealogy and are either unstable or hard to tune in practice. We propose to mitigate these limitations by introducing a new estimator of the asymptotic variance based on the so called backward weights. The resulting estimator is weakly consistent and trades computational cost for more stability and reduced variance. We also propose a more computationally efficient estimator inspired by the PaRIS algorithm of Olsson & Westerborn. As an application, particle smoothing is considered and an estimator of the asymptotic variance of the Forward Filtering Backward Smoothing estimator applied to additive functionals is provided.
Submission history
From: Yazid Janati [view email][v1] Mon, 4 Apr 2022 11:33:18 UTC (1,413 KB)
[v2] Mon, 2 Jan 2023 23:15:17 UTC (2,789 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.