Electrical Engineering and Systems Science > Systems and Control
[Submitted on 4 Apr 2022 (v1), last revised 22 Nov 2022 (this version, v2)]
Title:Circuit Model Reduction with Scaled Relative Graphs
View PDFAbstract:Continued fractions are classical representations of complex objects (for example, real numbers) as sums and inverses of simpler objects (for example, integers). The analogy in linear circuit theory is a chain of series/parallel one-ports: the port behavior is a continued fraction containing the port behaviors of its elements. Truncating a continued fraction is a classical method of approximation, which corresponds to deleting the circuit elements furthest from the port. We apply this idea to chains of series/parallel one-ports composed of arbitrary nonlinear relations. This gives a model reduction method which automatically preserves properties such as incremental positivity. The Scaled Relative Graph (SRG) gives a graphical representation of the original and truncated port behaviors. The difference of these SRGs gives a bound on the approximation error, which is shown to be competitive with existing methods.
Submission history
From: Thomas Chaffey [view email][v1] Mon, 4 Apr 2022 12:36:13 UTC (506 KB)
[v2] Tue, 22 Nov 2022 13:23:07 UTC (807 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.