Statistics > Methodology
[Submitted on 4 Apr 2022 (v1), last revised 6 Jun 2023 (this version, v2)]
Title:Low Tree-Rank Bayesian Vector Autoregression Model
View PDFAbstract:Vector autoregression has been widely used for modeling and analysis of multivariate time series data. In high-dimensional settings, model parameter regularization schemes inducing sparsity yield interpretable models and achieved good forecasting performance. However, in many data applications, such as those in neuroscience, the Granger causality graph estimates from existing vector autoregression methods tend to be quite dense and difficult to interpret, unless one compromises on the goodness-of-fit. To address this issue, this paper proposes to incorporate a commonly used structural assumption -- that the ground-truth graph should be largely connected, in the sense that it should only contain at most a few components. We take a Bayesian approach and develop a novel tree-rank prior distribution for the regression coefficients. Specifically, this prior distribution forces the non-zero coefficients to appear only on the union of a few spanning trees. Since each spanning tree connects $p$ nodes with only $(p-1)$ edges, it effectively achieves both high connectivity and high sparsity. We develop a computationally efficient Gibbs sampler that is scalable to large sample size and high dimension. In analyzing test-retest functional magnetic resonance imaging data, our model produces a much more interpretable graph estimate, compared to popular existing approaches. In addition, we show appealing properties of this new method, such as efficient computation, mild stability conditions and posterior consistency.
Submission history
From: Leo Duan [view email][v1] Mon, 4 Apr 2022 15:24:56 UTC (1,166 KB)
[v2] Tue, 6 Jun 2023 18:32:20 UTC (1,287 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.