Computer Science > Computer Science and Game Theory
[Submitted on 4 Apr 2022 (v1), last revised 11 Aug 2022 (this version, v3)]
Title:On Convergence Lemma and Convergence Stability for Piecewise Analytic Functions
View PDFAbstract:In this work, a convergence lemma for function $f$ being finite compositions of analytic mappings and the maximum operator is proved. The lemma shows that the set of $\delta$-stationary points near an isolated local minimum point $x^*$ is shrinking to $x^*$ as $\delta\to 0$. It is a natural extension of the version for strongly convex $C^1$ functions. However, the correctness of the lemma is subtle. Analytic mappings are necessary for the lemma in the sense that replacing it with differentiable or $C^\infty$ mappings makes the lemma false. The proof is based on stratification theorems of semi-analytic sets by Łojasiewicz. An extension of this proof presents a geometric characterization of the set of stationary points of $f$. Finally, a notion of stability on stationary points, called convergence stability, is proposed. It asks, under small numerical errors, whether a reasonable convergent optimization method started near a stationary point should eventually converge to the same stationary point. The concept of convergence stability becomes nontrivial qualitatively only when the objective function is both nonsmooth and nonconvex. Via the convergence lemma, an intuitive equivalent condition for convergence stability of $f$ is proved. These results together provide a new geometric perspective to study the problem of "where-to-converge" in nonsmooth nonconvex optimization.
Submission history
From: Hanyu Li [view email][v1] Mon, 4 Apr 2022 16:46:19 UTC (505 KB)
[v2] Fri, 27 May 2022 15:29:42 UTC (64 KB)
[v3] Thu, 11 Aug 2022 08:50:43 UTC (33 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.