Statistics > Computation
[Submitted on 4 Apr 2022 (v1), last revised 20 Nov 2022 (this version, v2)]
Title:A PRticle filter algorithm for nonparametric estimation of multivariate mixing distributions
View PDFAbstract:Predictive recursion (PR) is a fast, recursive algorithm that gives a smooth estimate of the mixing distribution under the general mixture model. However, the PR algorithm requires evaluation of a normalizing constant at each iteration. When the support of the mixing distribution is of relatively low dimension, this is not a problem since quadrature methods can be used and are very efficient. But when the support is of higher dimension, quadrature methods are inefficient and there is no obvious Monte Carlo-based alternative. In this paper, we propose a new strategy, which we refer to as a PRticle filter, wherein we augment the basic PR algorithm with a filtering mechanism that adaptively reweights an initial set of particles along the updating sequence which are used to obtain Monte Carlo approximations of the normalizing constants. Convergence properties of the PRticle filter approximation are established and its empirical accuracy is demonstrated with simulation studies and a marked spatial point process data analysis.
Submission history
From: Ryan Martin [view email][v1] Mon, 4 Apr 2022 16:54:11 UTC (2,140 KB)
[v2] Sun, 20 Nov 2022 21:57:36 UTC (2,864 KB)
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.