Statistics > Computation
[Submitted on 4 Apr 2022]
Title:Hybrid Probabilistic-Snowball Sampling
View PDFAbstract:Snowball sampling is the common name for sampling designs on human populations where respondents are requested to share the questionnaire among their social ties. With some exceptions, estimates from snowball samplings are considered biased. However, the magnitude of the bias is influenced by a combination of elements of the sampling design and features of the target population. Hybrid Probabilistic-Snowball Sampling Designs (HPSSD) aims to reduce the main source of bias in the snowball sample through randomly oversampling the first stage 0 of the snowball.
To check the behaviour of HPSSD for applications, we developed an algorithm that, by grafting the edges of a stochastic blockmodel into a graph of cliques, simulates an assortative network of tobacco smokers. Different outcomes of the HPSSD operations are simulated, too.
Inference on 8,000 runs of the simulation leads to think that HPSSD does not improve reliability of samples that are already representative. But if homophily in the population is sufficiently low, even the unadjusted sample mean of HPSSD has a slightly better performance than a random, but undersized, sampling.
De-biasing the estimates of HPSSD shows improvement in the performance, so an adjusted HPSSD estimator is a desirable development.
Submission history
From: Giulio Giacomo Cantone [view email][v1] Mon, 4 Apr 2022 23:21:47 UTC (793 KB)
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.