Electrical Engineering and Systems Science > Systems and Control
[Submitted on 5 Apr 2022 (v1), last revised 18 Nov 2022 (this version, v2)]
Title:On the Computational Consequences of Cost Function Design in Nonlinear Optimal Control
View PDFAbstract:Optimal control is an essential tool for stabilizing complex nonlinear systems. However, despite the extensive impacts of methods such as receding horizon control, dynamic programming and reinforcement learning, the design of cost functions for a particular system often remains a heuristic-driven process of trial and error. In this paper we seek to gain insights into how the choice of cost function interacts with the underlying structure of the control system and impacts the amount of computation required to obtain a stabilizing controller.
We treat the cost design problem as a two-step process where the designer specifies outputs for the system that are to be penalized and then modulates the relative weighting of the inputs and the outputs in the cost. To characterize the computational burden associated to obtaining a stabilizing controller with a particular cost, we bound the prediction horizon required by receding horizon methods and the number of iterations required by dynamic programming methods to meet this requirement. Our theoretical results highlight a qualitative separation between what is possible, from a design perspective, when the chosen outputs induce either minimum-phase or non-minimum-phase behavior. Simulation studies indicate that this separation also holds for modern reinforcement learning methods.
Submission history
From: Tyler Westenbroek [view email][v1] Tue, 5 Apr 2022 04:56:09 UTC (1,610 KB)
[v2] Fri, 18 Nov 2022 00:26:02 UTC (1,566 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.