Statistics > Methodology
[Submitted on 5 Apr 2022 (v1), last revised 14 Sep 2023 (this version, v4)]
Title:GP-BART: a novel Bayesian additive regression trees approach using Gaussian processes
View PDFAbstract:The Bayesian additive regression trees (BART) model is an ensemble method extensively and successfully used in regression tasks due to its consistently strong predictive performance and its ability to quantify uncertainty. BART combines "weak" tree models through a set of shrinkage priors, whereby each tree explains a small portion of the variability in the data. However, the lack of smoothness and the absence of an explicit covariance structure over the observations in standard BART can yield poor performance in cases where such assumptions would be necessary. The Gaussian processes Bayesian additive regression trees (GP-BART) model is an extension of BART which addresses this limitation by assuming Gaussian process (GP) priors for the predictions of each terminal node among all trees. The model's effectiveness is demonstrated through applications to simulated and real-world data, surpassing the performance of traditional modeling approaches in various scenarios.
Submission history
From: Mateus Maia [view email][v1] Tue, 5 Apr 2022 11:18:44 UTC (3,151 KB)
[v2] Wed, 6 Apr 2022 10:54:11 UTC (2,959 KB)
[v3] Wed, 7 Dec 2022 15:30:28 UTC (3,658 KB)
[v4] Thu, 14 Sep 2023 18:27:18 UTC (4,683 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.