Electrical Engineering and Systems Science > Systems and Control
[Submitted on 5 Apr 2022 (v1), last revised 9 Jun 2022 (this version, v3)]
Title:Scalable tube model predictive control of uncertain linear systems using ellipsoidal sets
View PDFAbstract:This work proposes a novel robust model predictive control (MPC) algorithm for linear systems affected by dynamic model uncertainty and exogenous disturbances. The uncertainty is modeled using a linear fractional perturbation structure with a time-varying perturbation matrix, enabling the algorithm to be applied to a large model class. The MPC controller constructs a state tube as a sequence of parameterized ellipsoidal sets to bound the state trajectories of the system. The proposed approach results in a semidefinite program to be solved online, whose size scales linearly with the order of the system. The design of the state tube is formulated as an offline optimization problem, which offers flexibility to impose desirable features such as robust invariance on the terminal set. This contrasts with most existing tube MPC strategies using polytopic sets in the state tube, which are difficult to design and whose complexity grows combinatorially with the system order. The algorithm guarantees constraint satisfaction, recursive feasibility, and stability of the closed loop. The advantages of the algorithm are demonstrated using two simulation studies.
Submission history
From: Anilkumar Parsi [view email][v1] Tue, 5 Apr 2022 11:54:30 UTC (318 KB)
[v2] Fri, 8 Apr 2022 09:26:16 UTC (315 KB)
[v3] Thu, 9 Jun 2022 14:48:38 UTC (396 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.