High Energy Physics - Theory
[Submitted on 5 Apr 2022 (v1), last revised 30 Jan 2024 (this version, v4)]
Title:Modular bootstrap for D4-D2-D0 indices on compact Calabi-Yau threefolds
View PDFAbstract:We investigate the modularity constraints on the generating series $h_r(\tau)$ of BPS indices counting D4-D2-D0 bound states with fixed D4-brane charge $r$ in type IIA string theory compactified on complete intersection Calabi-Yau threefolds with $b_2 = 1$. For unit D4-brane, $h_1$ transforms as a (vector-valued) modular form under the action of $SL(2,Z)$ and thus is completely determined by its polar terms. We propose an Ansatz for these terms in terms of rank 1 Donaldson-Thomas invariants, which incorporates contributions from a single D6-anti-D6 pair. Using an explicit overcomplete basis of the relevant space of weakly holomorphic modular forms (valid for any $r$), we find that for 10 of the 13 allowed threefolds, the Ansatz leads to a solution for $h_1$ with integer Fourier coefficients, thereby predicting an infinite series of DT this http URL $r > 1$, $h_r$ is mock modular and determined by its polar part together with its shadow. Restricting to $r = 2$, we use the generating series of Hurwitz class numbers to construct a series $h^{an}_2$ with exactly the same modular anomaly as $h_2$, so that the difference $h_{2}-h^{an}_2$ is an ordinary modular form fixed by its polar terms. For lack of a satisfactory Ansatz, we leave the determination of these polar terms as an open problem.
Submission history
From: Boris Pioline [view email][v1] Tue, 5 Apr 2022 13:35:36 UTC (106 KB)
[v2] Thu, 1 Sep 2022 12:24:52 UTC (115 KB)
[v3] Fri, 3 Feb 2023 07:08:28 UTC (115 KB)
[v4] Tue, 30 Jan 2024 08:10:02 UTC (111 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.