Statistics > Methodology
[Submitted on 6 Apr 2022 (v1), last revised 26 May 2022 (this version, v2)]
Title:Bayesian Adaptive Selection of Basis Functions for Functional Data Representation
View PDFAbstract:Considering the context of functional data analysis, we developed and applied a new Bayesian approach via Gibbs sampler to select basis functions for a finite representation of functional data. The proposed methodology uses Bernoulli latent variables to assign zero to some of the basis function coefficients with a positive probability. This procedure allows for an adaptive basis selection since it can determine the number of bases and which should be selected to represent functional data. Moreover, the proposed procedure measures the uncertainty of the selection process and can be applied to multiple curves simultaneously. The methodology developed can deal with observed curves that may differ due to experimental error and random individual differences between subjects, which one can observe in a real dataset application involving daily numbers of COVID-19 cases in Brazil. Simulation studies show the main properties of the proposed method, such as its accuracy in estimating the coefficients and the strength of the procedure to find the true set of basis functions. Despite having been developed in the context of functional data analysis, we also compared the proposed model via simulation with the well-established LASSO and Bayesian LASSO, which are methods developed for non-functional data.
Submission history
From: Pedro Henrique Toledo De Oliveira Sousa [view email][v1] Wed, 6 Apr 2022 22:14:41 UTC (1,170 KB)
[v2] Thu, 26 May 2022 14:24:23 UTC (1,379 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.