Mathematics > Probability
[Submitted on 7 Apr 2022]
Title:Optimal convergence order for multi-scale stochastic Burgers equation
View PDFAbstract:In this paper, we study the strong and weak convergence rates for multi-scale one-dimensional stochastic Burgers equation. Based on the techniques of Galerkin approximation, Kolmogorov equation and Poisson equation, we obtain the slow component strongly and weakly converges to the solution of the corresponding averaged equation with optimal orders 1/2 and 1 respectively. The highly nonlinear term in system brings us huge difficulties, we develop new technique to overcome these difficulties. To the best of our knowledge, this work seems to be the first result in which the optimal convergence orders in strong and weak sense for multi-scale stochastic partial differential equations with highly nonlinear term.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.