Statistics > Methodology
[Submitted on 8 Apr 2022 (v1), last revised 30 Jan 2023 (this version, v2)]
Title:Assessing Statistical Disclosure Risk for Differentially Private, Hierarchical Count Data, with Application to the 2020 U.S. Decennial Census
View PDFAbstract:We propose Bayesian methods to assess the statistical disclosure risk of data released under zero-concentrated differential privacy, focusing on settings with a strong hierarchical structure and categorical variables with many levels. Risk assessment is performed by hypothesizing Bayesian intruders with various amounts of prior information and examining the distance between their posteriors and priors. We discuss applications of these risk assessment methods to differentially private data releases from the 2020 decennial census and perform simulation studies using public individual-level data from the 1940 decennial census. Among these studies, we examine how the data holder's choice of privacy parameter affects the disclosure risk and quantify the increase in risk when a hypothetical intruder incorporates substantial amounts of hierarchical information.
Submission history
From: Zeki Kazan [view email][v1] Fri, 8 Apr 2022 18:57:00 UTC (64 KB)
[v2] Mon, 30 Jan 2023 19:15:50 UTC (711 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.