Statistics > Methodology
[Submitted on 8 Apr 2022 (v1), last revised 9 Nov 2022 (this version, v2)]
Title:Conformal Frequency Estimation with Sketched Data
View PDFAbstract:A flexible conformal inference method is developed to construct confidence intervals for the frequencies of queried objects in very large data sets, based on a much smaller sketch of those data. The approach is data-adaptive and requires no knowledge of the data distribution or of the details of the sketching algorithm; instead, it constructs provably valid frequentist confidence intervals under the sole assumption of data exchangeability. Although our solution is broadly applicable, this paper focuses on applications involving the count-min sketch algorithm and a non-linear variation thereof. The performance is compared to that of frequentist and Bayesian alternatives through simulations and experiments with data sets of SARS-CoV-2 DNA sequences and classic English literature.
Submission history
From: Matteo Sesia [view email][v1] Fri, 8 Apr 2022 19:39:37 UTC (185 KB)
[v2] Wed, 9 Nov 2022 00:01:11 UTC (197 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.