Statistics > Methodology
[Submitted on 11 Apr 2022]
Title:Empirical Bayes inference for the block maxima method
View PDFAbstract:The block maxima method is one of the most popular approaches for extreme value analysis with independent and identically distributed observations in the domain of attraction of an extreme value distribution. The lack of a rigorous study on the Bayesian inference in this context has limited its use for statistical analysis of extremes. In this paper we propose an empirical Bayes procedure for inference on the block maxima law and its related quantities. We show that the posterior distributions of the tail index of the data distribution and of the return levels (representative of future extreme episodes) satisfy a number of important theoretical properties. These guarantee the reliability of posterior-based inference and extend to the posterior predictive distribution, the key tool in Bayesian probabilistic forecasting. Posterior computations are readily obtained via an efficient adaptive Metropolis-Hasting type of algorithm. Simulations show its excellent inferential performances already with modest sample sizes. The utility of our proposal is showcased analysing extreme winds generated by hurricanes in the Atlantic basin.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.