Statistics > Methodology
[Submitted on 11 Apr 2022]
Title:Robust and Efficient Parameter Estimation for Discretely Observed Stochastic Processes
View PDFAbstract:In various practical situations, we encounter data from stochastic processes which can be efficiently modelled by an appropriate parametric model for subsequent statistical analyses. Unfortunately, the most common estimation and inference methods based on the maximum likelihood (ML) principle are susceptible to minor deviations from assumed model or data contamination due to their well known lack of robustness. Since the alternative non-parametric procedures often lose significant efficiency, in this paper, we develop a robust parameter estimation procedure for discretely observed data from a parametric stochastic process model which exploits the nice properties of the popular density power divergence measure in the framework of minimum distance inference. In particular, here we define the minimum density power divergence estimators (MDPDE) for the independent increment and the Markov processes. We establish the asymptotic consistency and distributional results for the proposed MDPDEs in these dependent stochastic process set-ups and illustrate their benefits over the usual ML estimator for common examples like Poisson process, drifted Brownian motion and auto-regressive models.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.