Condensed Matter > Statistical Mechanics
[Submitted on 12 Apr 2022]
Title:Invariant subspaces and explicit Bethe vectors in the integrable open spin $1/2$ $\XYZ$ chain
View PDFAbstract:We derive a criterion under which splitting of all eigenstates of an open $\XYZ$ Hamiltonian with boundary fields into two invariant subspaces, spanned by chiral shock states, occurs. The splitting is governed by an integer number, which has the geometrical meaning of the maximal number of kinks in the basis states. We describe the generic structure of the respective Bethe vectors. We obtain explicit expressions for Bethe vectors, in the absence of Bethe roots, and those generated by one Bethe root, and investigate the \multiplet. We also describe in detail an elliptic analogue of the spin-helix state, appearing in both the periodic and the open $\XYZ$ model, and derive the eigenstate condition. The elliptic analogue of the spin-helix state is characterized by a quasi-periodic modulation of the magnetization profile, governed by Jacobi elliptic functions.
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.