Condensed Matter > Statistical Mechanics
[Submitted on 12 Apr 2022]
Title:Analytic continuation over complex landscapes
View PDFAbstract:In this paper we follow up the study of 'complex complex landscapes,' rugged landscapes of many complex variables. Unlike real landscapes, the classification of saddles by index is trivial. Instead, the spectrum of fluctuations at stationary points determines their topological stability under analytic continuation of the theory. Topological changes, which occur at so-called Stokes points, proliferate among saddles with marginal (flat) directions and are suppressed otherwise. This gives a direct interpretation of the gap or 'threshold' energy -- which in the real case separates saddles from minima -- as the level where the spectrum of the hessian matrix of stationary points develops a gap. This leads to different consequences for the analytic continuation of real landscapes with different structures: the global minima of 'one step replica-symmetry broken' landscapes lie beyond a threshold, their hessians are gapped, and are locally protected from Stokes points, whereas those of 'many step replica-symmetry broken' have gapless hessians and Stokes points immediately proliferate. A new matrix ensemble is found, playing the role that GOE plays for real landscapes in determining the topological nature of saddles.
Submission history
From: Jaron Kent-Dobias [view email][v1] Tue, 12 Apr 2022 20:24:54 UTC (2,167 KB)
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.