Statistics > Methodology
[Submitted on 13 Apr 2022 (v1), last revised 13 Sep 2022 (this version, v2)]
Title:Investigating the efficiency of marginalising over discrete parameters in Bayesian computations
View PDFAbstract:Bayesian analysis methods often use some form of iterative simulation such as Monte Carlo computation. Models that involve discrete variables can sometime pose a challenge, either because the methods used do not support such variables (e.g. Hamiltonian Monte Carlo) or because the presence of such variables can slow down the computation. A common workaround is to marginalise the discrete variables out of the model. While it is reasonable to expect that such marginalisation would also lead to more time-efficient computations, to our knowledge this has not been demonstrated beyond a few specialised models.
We explored the impact of marginalisation on the computational efficiency for a few simple statistical models. Specifically, we considered two- and three-component Gaussian mixture models, and also the Dawid-Skene model for categorical ratings. We explored each with two software implementations of Markov chain Monte Carlo techniques: JAGS and Stan. We directly compared marginalised and non-marginalised versions of the same model using the samplers on the same software.
Our results show that marginalisation on its own does not necessarily boost performance. Nevertheless, the best performance was usually achieved with Stan, which requires marginalisation. We conclude that there is no simple answer to whether or not marginalisation is helpful. It is not necessarily the case that, when turned 'on', this technique can be assured to provide computational benefit independent of other factors, nor is it likely to be the model component that has the largest impact on computational efficiency.
Submission history
From: Damjan Vukcevic [view email][v1] Wed, 13 Apr 2022 11:36:37 UTC (179 KB)
[v2] Tue, 13 Sep 2022 13:32:08 UTC (180 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.