Electrical Engineering and Systems Science > Systems and Control
[Submitted on 13 Apr 2022]
Title:CoDGraD: A Code-based Distributed Gradient Descent Scheme for Decentralized Convex Optimization
View PDFAbstract:In this paper, we consider a large network containing many regions such that each region is equipped with a worker with some data processing and communication capability. For such a network, some workers may become stragglers due to the failure or heavy delay on computing or communicating. To resolve the above straggling problem, a coded scheme that introduces certain redundancy for every worker was recently proposed, and a gradient coding paradigm was developed to solve convex optimization problems when the network has a centralized fusion center. In this paper, we propose an iterative distributed algorithm, referred as Code-Based Distributed Gradient Descent algorithm (CoDGraD), to solve convex optimization problems over distributed networks. In each iteration of the proposed algorithm, an active worker shares the coded local gradient and approximated solution of the convex optimization problem with non-straggling workers at the adjacent regions only. In this paper, we also provide the consensus and convergence analysis for the CoDGraD algorithm and we demonstrate its performance via numerical simulations.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.