High Energy Physics - Theory
[Submitted on 13 Apr 2022 (v1), last revised 28 Jul 2022 (this version, v3)]
Title:Chaotic instability in the BFSS matrix model
View PDFAbstract:Chaotic scattering is a manifestation of transient chaos realized by the scattering with non-integrable potential. When the initial position is taken in the potential, a particle initially exhibits chaotic motion, but escapes outside after a certain period of time. The time to stay inside the potential can be seen as lifetime and this escape process may be regarded as a kind of instability. The process of this type exists in the Banks-Fischler-Shenker-Susskind (BFSS) matrix model in which the potential has flat directions. We discuss this chaotic instability by reducing the system with an ansatz to a simple dynamical system and present the associated fractal structure. We also show the singular behavior of the time delay function and compute the fractal dimension. This chaotic instability is the basic mechanism by which membranes are unstable, which is also common to supermembranes at quantum level.
Submission history
From: Osamu Fukushima [view email][v1] Wed, 13 Apr 2022 13:52:45 UTC (11,087 KB)
[v2] Fri, 6 May 2022 15:55:12 UTC (11,087 KB)
[v3] Thu, 28 Jul 2022 12:08:41 UTC (16,033 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.