Mathematics > Combinatorics
[Submitted on 13 Apr 2022 (v1), last revised 26 Aug 2022 (this version, v4)]
Title:The chromatic number of (P_5, HVN )-free graphs
View PDFAbstract:Let $G$ be a graph. We use $\chi(G)$ and $\omega(G)$ to denote the chromatic number and clique number of $G$ respectively. A $P_5$ is a path on 5 vertices, and an $HVN$ is a $K_4$ together with one more vertex which is adjacent to exactly two vertices of $K_4$. Combining with some known result, in this paper we show that if $G$ is $(P_5, \textit{HVN})$-free, then $\chi(G)\leq \max\{\min\{16, \omega(G)+3\}, \omega(G)+1\}$. This upper bound is almost sharp.
Submission history
From: Yian Xu Dr. [view email][v1] Wed, 13 Apr 2022 15:32:12 UTC (93 KB)
[v2] Sun, 1 May 2022 04:00:10 UTC (95 KB)
[v3] Fri, 29 Jul 2022 10:26:07 UTC (95 KB)
[v4] Fri, 26 Aug 2022 03:37:37 UTC (95 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.