Statistics > Methodology
[Submitted on 13 Apr 2022]
Title:Infinite Hidden Markov Models for Multiple Multivariate Time Series with Missing Data
View PDFAbstract:Exposure to air pollution is associated with increased morbidity and mortality. Recent technological advancements permit the collection of time-resolved personal exposure data. Such data are often incomplete with missing observations and exposures below the limit of detection, which limit their use in health effects studies. In this paper we develop an infinite hidden Markov model for multiple asynchronous multivariate time series with missing data. Our model is designed to include covariates that can inform transitions among hidden states. We implement beam sampling, a combination of slice sampling and dynamic programming, to sample the hidden states, and a Bayesian multiple imputation algorithm to impute missing data. In simulation studies, our model excels in estimating hidden states and state-specific means and imputing observations that are missing at random or below the limit of detection. We validate our imputation approach on data from the Fort Collins Commuter Study. We show that the estimated hidden states improve imputations for data that are missing at random compared to existing approaches. In a case study of the Fort Collins Commuter Study, we describe the inferential gains obtained from our model including improved imputation of missing data and the ability to identify shared patterns in activity and exposure among repeated sampling days for individuals and among distinct individuals.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.