Statistics > Methodology
[Submitted on 14 Apr 2022]
Title:Designing Experiments Toward Shrinkage Estimation
View PDFAbstract:We consider how increasingly available observational data can be used to improve the design of randomized controlled trials (RCTs). We seek to design a prospective RCT, with the intent of using an Empirical Bayes estimator to shrink the causal estimates from our trial toward causal estimates obtained from an observational study. We ask: how might we design the experiment to better complement the observational study in this setting?
We propose using an estimator that shrinks each component of the RCT causal estimator toward its observational counterpart by a factor proportional to its variance. First, we show that the risk of this estimator can be computed efficiently via numerical integration. We then propose algorithms for determining the best allocation of units to strata (the best "design"). We consider three options: Neyman allocation; a "naive" design assuming no unmeasured confounding in the observational study; and a "defensive" design accounting for the imperfect parameter estimates we would obtain from the observational study with unmeasured confounding.
We also incorporate results from sensitivity analysis to establish guardrails on the designs, so that our experiment could be reasonably analyzed with and without shrinkage. We demonstrate the superiority of these experimental designs with a simulation study involving causal inference on a rare, binary outcome.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.