Statistics > Methodology
[Submitted on 14 Apr 2022]
Title:Robust Bayesian inference in complex models with possibility theory
View PDFAbstract:We propose a general solution to the problem of robust Bayesian inference in complex settings where outliers may be present. In practice, the automation of robust Bayesian analyses is important in the many applications involving large and complex datasets. The proposed solution relies on a reformulation of Bayesian inference based on possibility theory, and leverages the observation that, in this context, the marginal likelihood of the data assesses the consistency between prior and likelihood rather than model fitness. Our approach does not require additional parameters in its simplest form and has a limited impact on the computational complexity when compared to non-robust solutions. The generality of our solution is demonstrated via applications on simulated and real data including matrix estimation and change-point detection.
Submission history
From: Jeremie Houssineau [view email][v1] Thu, 14 Apr 2022 12:13:34 UTC (728 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.