Statistics > Machine Learning
[Submitted on 14 Apr 2022 (v1), last revised 11 Dec 2022 (this version, v2)]
Title:Concentration of Random Feature Matrices in High-Dimensions
View PDFAbstract:The spectra of random feature matrices provide essential information on the conditioning of the linear system used in random feature regression problems and are thus connected to the consistency and generalization of random feature models. Random feature matrices are asymmetric rectangular nonlinear matrices depending on two input variables, the data and the weights, which can make their characterization challenging. We consider two settings for the two input variables, either both are random variables or one is a random variable and the other is well-separated, i.e. there is a minimum distance between points. With conditions on the dimension, the complexity ratio, and the sampling variance, we show that the singular values of these matrices concentrate near their full expectation and near one with high-probability. In particular, since the dimension depends only on the logarithm of the number of random weights or the number of data points, our complexity bounds can be achieved even in moderate dimensions for many practical setting. The theoretical results are verified with numerical experiments.
Submission history
From: Hayden Schaeffer [view email][v1] Thu, 14 Apr 2022 13:01:27 UTC (258 KB)
[v2] Sun, 11 Dec 2022 20:03:02 UTC (259 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.