Astrophysics > Earth and Planetary Astrophysics
[Submitted on 14 Apr 2022]
Title:Analytic Solution for Perturbed Keplerian Motion Under Small Acceleration Using Averaging Theory
View PDFAbstract:A novel approach is developed for analytic orbit propagation based on asymptotic expansion with respect to a small perturbative acceleration. The method improves upon existing first order asymptotic expansions by leveraging on linear systems and averaging theories. The solution starts with the linearization of Gauss planetary equations with respect to both the small perturbation and the six orbital elements. Then, an approximate solution is obtained in terms of secular and short period components. The method is tested on a low-thrust maneuver scenario consisting of a Keplerian orbit perturbed by a constant tangential acceleration, for which a solution can be obtained in terms of elliptic integrals. Results show that the positional propagation error is about one order of magnitude smaller with respect to state-of-the-art methods. The position accuracy for a LEO orbit, apart from pathological cases, is typically in the range of tens of meters for a dimensionless tangential acceleration of 1e-5 after 5 orbital periods propagation.
Current browse context:
astro-ph.EP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.