Computer Science > Logic in Computer Science
[Submitted on 14 Apr 2022]
Title:Probability monads with submonads of deterministic states - Extended version
View PDFAbstract:Probability theory can be studied synthetically as the computational effect embodied by a commutative monad. In the recently proposed Markov categories, one works with an abstraction of the Kleisli category and then defines deterministic morphisms equationally in terms of copying and discarding. The resulting difference between 'pure' and 'deterministic' leads us to investigate the 'sober' objects for a probability monad, for which the two concepts coincide. We propose natural conditions on a probability monad which allow us to identify the sober objects and define an idempotent sobrification functor. Our framework applies to many examples of interest, including the Giry monad on measurable spaces, and allows us to sharpen a previously given version of de Finetti's theorem for Markov categories.
This is an extended version of the paper accepted for the Logic In Computer Science (LICS) conference 2022. In this document we include more mathematical details, including all the proofs, of the statements and constructions given in the published version.
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.