Statistics > Methodology
[Submitted on 14 Apr 2022 (v1), last revised 29 Jan 2024 (this version, v5)]
Title:Nonresponse Bias Analysis in Longitudinal Studies: A Comparative Review with an Application to the Early Childhood Longitudinal Study
View PDFAbstract:Longitudinal studies are subject to nonresponse when individuals fail to provide data for entire waves or particular questions of the survey. We compare approaches to nonresponse bias analysis (NRBA) in longitudinal studies and illustrate them on the Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011). Wave nonresponse with attrition often yields a monotone missingness pattern, and the missingness mechanism can be missing at random (MAR) or missing not at random (MNAR). We discuss weighting, multiple imputation (MI), incomplete data modeling, and Bayesian approaches to NRBA for monotone patterns. Weighting adjustments are effective when the constructed weights are correlated to the survey outcome of interest. MI allows for variables with missing values to be included in the imputation model, yielding potentially less biased and more efficient estimates. Multilevel models with maximum likelihood estimation and marginal models estimated using generalized estimating equations can also handle incomplete longitudinal data. Bayesian methods introduce prior information and potentially stabilize model estimation. We add offsets in the MAR results to provide sensitivity analyses to assess MNAR deviations. We conduct NRBA for descriptive summaries and analytic model estimates and find that in the ECLS-K:2011 application, NRBA yields minor changes to the substantive conclusions. The strength of evidence about our NRBA depends on the strength of the relationship between the characteristics in the nonresponse adjustment and the key survey outcomes, so the key to a successful NRBA is to include strong predictors.
Submission history
From: Yajuan Si [view email][v1] Thu, 14 Apr 2022 16:56:25 UTC (758 KB)
[v2] Thu, 21 Apr 2022 19:45:22 UTC (763 KB)
[v3] Thu, 27 Apr 2023 21:46:13 UTC (917 KB)
[v4] Wed, 16 Aug 2023 16:50:34 UTC (890 KB)
[v5] Mon, 29 Jan 2024 20:09:53 UTC (572 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.