Quantum Physics
[Submitted on 14 Apr 2022 (v1), last revised 20 Oct 2022 (this version, v2)]
Title:Tight Bounds for Quantum State Certification with Incoherent Measurements
View PDFAbstract:We consider the problem of quantum state certification, where we are given the description of a mixed state $\sigma \in \mathbb{C}^{d \times d}$, $n$ copies of a mixed state $\rho \in \mathbb{C}^{d \times d}$, and $\varepsilon > 0$, and we are asked to determine whether $\rho = \sigma$ or whether $\| \rho - \sigma \|_1 > \varepsilon$. When $\sigma$ is the maximally mixed state $\frac{1}{d} I_d$, this is known as mixedness testing. We focus on algorithms which use incoherent measurements, i.e. which only measure one copy of $\rho$ at a time. Unlike those that use entangled, multi-copy measurements, these can be implemented without persistent quantum memory and thus represent a large class of protocols that can be run on current or near-term devices.
For mixedness testing, there is a folklore algorithm which uses incoherent measurements and only needs $O(d^{3/2} / \varepsilon^2)$ copies. The algorithm is non-adaptive, that is, its measurements are fixed ahead of time, and is known to be optimal for non-adaptive algorithms. However, when the algorithm can make arbitrary incoherent measurements, the best known lower bound is only $\Omega (d^{4/3} / \varepsilon^2)$ [Bubeck-Chen-Li '20], and it has been an outstanding open problem to close this polynomial gap. In this work, 1) we settle the copy complexity of mixedness testing with incoherent measurements and show that $\Omega (d^{3/2} / \varepsilon^2)$ copies are necessary, and 2) we show the instance-optimal bounds for state certification to general $\sigma$ first derived by [Chen-Li-O'Donnell '21] for non-adaptive measurements also hold for arbitrary incoherent measurements.
Qualitatively, our results say that adaptivity does not help at all for these problems. Our results are based on new techniques that allow us to reduce the problem to understanding certain matrix martingales, which we believe may be of independent interest.
Submission history
From: Sitan Chen [view email][v1] Thu, 14 Apr 2022 17:59:31 UTC (77 KB)
[v2] Thu, 20 Oct 2022 05:03:24 UTC (79 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.