Computer Science > Data Structures and Algorithms
[Submitted on 15 Apr 2022 (v1), last revised 16 Jun 2023 (this version, v2)]
Title:Finding Hall blockers by matrix scaling
View PDFAbstract:For a given nonnegative matrix $A=(A_{ij})$, the matrix scaling problem asks whether $A$ can be scaled to a doubly stochastic matrix $D_1AD_2$ for some positive diagonal matrices $D_1,D_2$.The Sinkhorn algorithm is a simple iterative algorithm, which repeats row-normalization $A_{ij} \leftarrow A_{ij}/\sum_{j}A_{ij}$ and column-normalization $A_{ij} \leftarrow A_{ij}/\sum_{i}A_{ij}$ alternatively. By this algorithm, $A$ converges to a doubly stochastic matrix in limit if and only if the bipartite graph associated with $A$ has a perfect matching. This property can decide the existence of a perfect matching in a given bipartite graph $G$, which is identified with the $0,1$-matrix $A_G$.Linial, Samorodnitsky, and Wigderson showed that $O(n^2 \log n)$ iterations for $A_G$ decide whether $G$ has a perfect matching. Here $n$ is the number of vertices in one of the color classes of $G$. In this paper, we show an extension of this result:If $G$ has no perfect matching, then a polynomial number of the Sinkhorn iterations identifies a Hall blocker -- a vertex subset $X$ having neighbors $\Gamma(X)$ with $|X| > |\Gamma(X)|$. Specifically, we show that $O(n^2 \log n)$ iterations can identify one Hall blocker, and that further polynomial iterations can also identify all parametric Hall blockers $X$ of maximizing $(1-\lambda) |X| - \lambda |\Gamma(X)|$ for $\lambda \in [0,1]$.The former result is based on an interpretation of the Sinkhorn algorithm as alternating minimization for geometric programming. The latter is on an interpretation as alternating minimization for KL-divergence (Csiszár and Tusnády 1984, Gietl and Reffel 2013) and its limiting behavior for a nonscalable matrix (Aas 2014). We also relate the Sinkhorn limit with parametric network flow, principal partition of polymatroids, and the Dulmage-Mendelsohn decomposition of a bipartite graph.
Submission history
From: Hiroshi Hirai [view email][v1] Fri, 15 Apr 2022 11:40:55 UTC (164 KB)
[v2] Fri, 16 Jun 2023 01:11:15 UTC (169 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.