Statistics > Methodology
[Submitted on 15 Apr 2022]
Title:Gamma-Minimax Wavelet Shrinkage with Three-Point Priors
View PDFAbstract:In this paper we propose a method for wavelet denoising of signals contaminated with Gaussian noise when prior information about the $L^2$-energy of the signal is available. Assuming the independence model, according to which the wavelet coefficients are treated individually, we propose a simple, level dependent shrinkage rules that turn out to be
$\Gamma$-minimax for a suitable class of priors.
The proposed methodology is particularly well suited in denoising tasks when the signal-to-noise ratio is low, which is illustrated by simulations on the battery of standard test functions. Comparison to some standardly used wavelet shrinkage methods is provided.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.