Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 16 Apr 2022]
Title:Classification of KPI Lumps
View PDFAbstract:A large family of nonsingular rational solutions of the Kadomtsev-Petviashvili (KP) I equation are investigated. These solutions are constructed via the Gramian method and are identified as points in a complex Grassmannian. Each solution is a traveling wave moving with a uniform background velocity but have multiple peaks which evolve at a slower time scale in the co-moving frame. For large times, these peaks separate and form well-defined wave patterns in the $xy$-plane. The pattern formation are described by the roots of well-known polynomials arising in the study of rational solutions of Painlevé II and IV equations. This family of solutions are shown to be described by the classical Schur functions associated with partitions of integers and irreducible representations of the symmetric group of $N$ objects. It is then shown that there exists a one-to-one correspondence between the KPI rational solutions considered in this article and partitions of a positive integer $N$.
Current browse context:
nlin.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.