Statistics > Methodology
[Submitted on 17 Apr 2022 (v1), last revised 30 Oct 2024 (this version, v4)]
Title:Multi-Model Subset Selection
View PDF HTML (experimental)Abstract:The two primary approaches for high-dimensional regression problems are sparse methods (e.g., best subset selection, which uses the L0-norm in the penalty) and ensemble methods (e.g., random forests). Although sparse methods typically yield interpretable models, in terms of prediction accuracy they are often outperformed by "blackbox" multi-model ensemble methods. A regression ensemble is introduced which combines the interpretability of sparse methods with the high prediction accuracy of ensemble methods. An algorithm is proposed to solve the joint optimization of the corresponding L0-penalized regression models by extending recent developments in L0-optimization for sparse methods to multi-model regression ensembles. The sparse and diverse models in the ensemble are learned simultaneously from the data. Each of these models provides an explanation for the relationship between a subset of predictors and the response variable. Empirical studies and theoretical knowledge about ensembles are used to gain insight into the ensemble method's performance, focusing on the interplay between bias, variance, covariance, and variable selection. In prediction tasks, the ensembles can outperform state-of-the-art competitors on both simulated and real data. Forward stepwise regression is also generalized to multi-model regression ensembles and used to obtain an initial solution for the algorithm. The optimization algorithms are implemented in publicly available software packages.
Submission history
From: Anthony Christidis [view email][v1] Sun, 17 Apr 2022 22:54:40 UTC (30 KB)
[v2] Wed, 26 Jul 2023 04:06:22 UTC (387 KB)
[v3] Sat, 19 Oct 2024 23:29:09 UTC (478 KB)
[v4] Wed, 30 Oct 2024 02:49:55 UTC (478 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.