High Energy Physics - Theory
[Submitted on 19 Apr 2022 (v1), last revised 28 May 2022 (this version, v3)]
Title:Comments on noncommutative quantum mechanical systems associated with Lie algebras
View PDFAbstract:We consider quantum mechanics on the noncommutative spaces characterized by the commutation relations $$ [x_a, x_b] \ =\ i\theta f_{abc} x_c\,, $$ where $f_{abc}$ are the structure constants of a Lie algebra. We note that this problem can be reformulated as an ordinary quantum problem in a commuting momentum space. The coordinates are then represented as linear differential operators $\hat x_a = -i\hat D_a = -iE_{ab} (p)\, \partial /\partial p_b $. Generically, the matrix $E_{ab}(p)$ represents a certain infinite series over the deformation parameter $\theta$: $E_{ab} = \delta_{ab} + \ldots$. The deformed Hamiltonian, $\hat H = -\frac 12 \hat D_a^2\,,$ describes the motion along the corresponding group manifolds with the characteristic size of order $\theta^{-1}$. Their metrics are also expressed into certain infinite series in $\theta$, with $E_{ab}$ having the meaning of vielbeins. For the algebras $su(2)$ and $u(N)$, it has been possible to represent the operators $\hat x_a$ in a simple finite form. A byproduct of our study are new nonstandard formulas for the metrics on all the spheres $S^n$, on the corresponding projective spaces $RP^n$ and on $U(2)$.
Submission history
From: Andrei Smilga [view email][v1] Tue, 19 Apr 2022 07:15:58 UTC (8 KB)
[v2] Sun, 1 May 2022 12:24:25 UTC (9 KB)
[v3] Sat, 28 May 2022 10:38:14 UTC (12 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.