Quantum Physics
[Submitted on 19 Apr 2022]
Title:The Interplay between Quantum Contextuality and Wigner Negativity
View PDFAbstract:The use of quantum information in technology promises to supersede the so-called classical devices used nowadays. Understanding what features are inherently non-classical is crucial for reaching better-than-classical performance. This thesis focuses on two nonclassical behaviours: quantum contextuality and Wigner negativity. The former is a notion superseding nonlocality that can be exhibited by quantum systems. To date, it has mostly been studied in discrete-variable scenarios. In those scenarios, contextuality has been shown to be necessary and sufficient for advantages in some cases. On the other hand, negativity of the Wigner function is another unsettling non-classical feature of quantum states that originates from phase-space formulation in continuous-variable quantum optics. Continuous-variable scenarios offer promising candidates for implementing quantum computations. Wigner negativity is known to be a necessary resource for quantum speedup with continuous variables. However contextuality has been little understood and studied in continuous-variable scenarios.
We first set out a robust framework for properly treating contextuality in continuous variables. We also quantify contextuality in such scenarios by using tools from infinite-dimensional optimisation theory. Building upon this, we show that Wigner negativity is equivalent to contextuality in continuous variables with respect to Pauli measurements thus establishing a continuous-variable analogue of a celebrated result by Howard et al. We then introduce experimentally-friendly witnesses for Wigner negativity of single mode and multimode quantum states, based on fidelities with Fock states, using again tools from infinite-dimensional optimisation theory. We further extend the range of previously known discrete-variable results linking contextuality and advantage into a new territory of information retrieval.
Submission history
From: Pierre-Emmanuel Emeriau [view email][v1] Tue, 19 Apr 2022 10:05:09 UTC (3,311 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.